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INTRODUCTION

Wind energy is gaining popularity because 
it is a clean and sustainable energy source with 
minimal environmental impact. It also offers 
cost competitiveness, thanks to technological ad-
vancements [1]. The Global Wind Energy Council 
2022 claims that there are currently over 837 GW 
cumulative wind power capacity installed world-
wide [2]. Wind power’s price stability makes it a 
viable and appealing option to other sources of re-
newable energy. As a result of the recent surge in 
the penetration of wind power plants into the grid 
[3], new grid regulations have been established 
by transmission system operators to ensure the 
steady and reliable operation of electric networks. 

 Active and reactive power regulation, fault 
ride-through capability, and power quality are all 
technological issues, that should be considered 
when integrating wind energy conversion sys-
tems (WECS) into the electrical network [4]. As a 
result, the operating parameters of WECS should 
be as close as possible to those of the utility grid 
to assure energy supply stability, dependability, 
and availability. Under normal situations, WECS 
should maintain a sinusoidal voltage within ac-
ceptable magnitude and frequency boundaries in 
terms of power quality. In addition, the harmonic 
and flicker emissions should be kept within the 
allowed limits [5]. The mismatch between the 
WECS and the utility grid’s power quality param-
eters will result in poor supply quality [6].
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The proposed DPGS in this study is a small-
scale wind turbine consisting of a variable-speed 
wind turbine driving a directly-driven permanent 
magnet synchronous generator (DD-PMSG-
VSWT). The considered power system has sev-
eral benefits compared to constant-speed opera-
tions, including higher energy capture, operations 
at the maximum power point tracking (MPPT) 
for different wind speeds, decreased mechanical 
strains, reduced aerodynamic noise, and enhanced 
system reliability [7,8]. Due to a large number of 
rotor-pole pairs, the PMSG is ideal for a direct 
drive at low speeds [9]. The DD-PMSG-VSWT 
is connected to the grid via a frequency converter 
that consists of a grid-side inverter (GSI) and a 
machine-side converter (MSC) with a DC capaci-
tor. However, usually, vector control is used for 
controlling both the MSC and GSI with numer-
ous controllers like classical PI controllers (pro-
portional-integral), fuzzy logic controller [10], 
sliding mode control [11], and feedback lineariza-
tion [12], etc. The most widely used controllers 
are still PI regulators in the industry due to their 
resilience, ability, and long-term stability margins 
[13]. On the other hand, setting the PI controller’s 
parameters, is cumbersome, especially in indus-
trial systems with nonlinearities, high order, and 
delay time, therefore, the PI controller gains must 
be set correctly.

For fine-tuning PI regulator gain factors, 
many traditional and statistical methods are ap-
plied, including the Ziegler-Nichols method, Trial 
and Error method [14,15], Artificial Neural Net-
work (ANN) [16], Taguchi technique [17], Co-
hen-Coon method [18], and Affine projection al-
gorithm [19]. Unfortunately, the mentioned tech-
niques are incapable of tuning higher-order, com-
plex processes and are dependent on the incipient 
values [20,21]. Then there are meta-heuristic 
algorithms such as the Particle Swarm Optimiza-
tion (PSO) [22], Differential Evolution Algorithm 
[23], Bee Algorithm [24], Whale Optimization 
Algorithm (WOA) [25], Genetic Algorithm [26], 
etc. that act as viable solutions for fine-tuning the 
PI controller parameters. 

The Grey Wolf Optimizer (GWO) algorithm 
presented by Mirjalili [27] is a meta-heuristic 
method that was developed recently that imitates 
the grey wolves’ community and their hunting dy-
namics. The GWO has sparked a lot of interest 
in medical, networking, environmental applica-
tions, bioinformatics, robotics, image processing, 
machine learning, control engineering, and elec-
tric power engineering [28]. Researchers have 

successfully applied the GWO algorithm to the 
PID controller design [29]. In research [30], the 
GWO algorithm is used to manage load frequency. 
The authors of previous research [31] used GWO 
for a magnetic levitation system for optimizing 
a proportional integral derivative (PID) control-
ler whereas, in another work, the researchers pro-
posed the GWO algorithm for a DC-DC boost 
converter for tuning PID controller parameters. 
Using GWO, the PI controller has been success-
fully tuned in the pitch angle control system for 
tuning a fixed-speed wind turbine [32]. Authors 
of another research [33,34] used both GWO and 
PSO for control parameter optimization of MSC 
and GSI for improving the double-fed induction 
generator-based VSWT system’s transient opera-
tion, which proved the efficiency of the proposed 
algorithm. Recently GWO’s performance was 
benchmarked concerning exploitation, explora-
tion, convergence, and local optima avoidance 
on unimodal, multimodal, fixed-dimension multi-
modal, and composite functions [27]. It has been 
shown a significant advantage over other well-
known meta-heuristics in that only a few control 
parameters must be modified [35]. 

However, the DD-PMSG-VSWT system has 
a computational complexity, which is certainly a 
drawback in the case of direct application of the 
optimization algorithms to the power system es-
pecially when a large number of iterations are ap-
plied to the GWO algorithm. Hence, the authors 
could be thought the considered power system 
model is approximated using an ANN model as 
an alternative to cope with this drawback and de-
crease the computational time and enhance the 
optimization accuracy of GWO. ANN is a use-
ful modeling technique because it can learn both 
linear and nonlinear relationships between vari-
ables. The neural network model that produces 
the fitness function for the system is developed 
using ANN.

ANN is applied with the GWO and other 
metaheuristic algorithms for many applications 
[36–38]. For instance, in [39], an ANN model 
is utilized in conjunction with the GWO for 
groundwater remedial design. The results are 
compared to the solutions of the ANN-PSO and 
ANN-Differential Evolution models, and it con-
cluded that the suggested methodology has higher 
stability and convergence behavior. The study in 
[40] demonstrated the effectiveness of using the 
ANN-modified CSA-based approach to tune sev-
eral PI controllers in a grid-connected photovol-
taic system. In [41], ANN is combined with two 
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metaheuristic methods including GA and harmo-
ny search for weather forecasting. The graphical 
analysis and performance measurements revealed 
that the forecasting of daily mean temperatures 
has improved. In the article [42], an MPPT based 
on the artificial neural network was proposed 
to ensure that the system generated maximum 
power in variable atmospheric conditions. The 
obtained results demonstrated the superiority of 
the proposed method. In [43], a hybrid method, 
which combines both ANN & PSO for PV power 
generation was presented and showed that the 
ANN enables the existing PSO method to track 
MPP quickly. 

However, a review of the literature found 
no evidence of GWO-ANN being utilized in the 
optimization gains of PI controllers of the DD-
PMSG-VSWT study. In this paper, the GWO-
ANN combination is utilized to fine-tune the PI 
regulators’ gain factors employed within the GSI’s 
vector control of the DD-PMSG-VSWT grid con-
nection for the first time. The goal of this research 
is to come up with a solution to the improvement 
of the power quality as well as DC link voltage 
stability of grid-connected DD-PMSG-VSWT. 
The input errors to PI controllers are utilized as 
a fitness function. The GSI’s sequential control 
contains three PI regulators. As a result, six pa-
rameters need to be optimized. The obtained re-
sults of the GWO-ANN provided DC link voltage 
stability and power quality performances. Section 
2 provides a complete power system description. 
In Section 3, the GWO optimization and appli-
cation procedures are introduced. Section 4, has 
shown simulation results and discusses them, and 
Section 5 is the conclusion.

SYSTEM DESCRIPTION 

The sub-parts of the model include a PMSG, 
wind turbine (WT), uncontrolled rectifier, boost 
converter, GSI, LCL filter, three-phase transform-
er, DC-link capacitor, grid, and transmission line 
as shown in Figure 1. The local AC load that has 
a 380V line-to-line voltage has been linked to a 

local AC bus. An LCL filter is put between the 
grid and the GSI for reducing the harmonics and 
improving the power quality. The mentioned lo-
cal bus is linked to a three-phase 33 kV distribu-
tion grid using a 380V/33kV transformer. Table 1 
shows the parameters of the considered system. 

Wind turbine model

In this model, WT transforms the wind’s en-
ergy into mechanical power ( mP ), which is shown 
by the following relation regarding the changing 
wind speed ( vω ) [44]:

30.5m PP A v c  (1)

In this case, A shows the turbine’s swept area
2m , and ρ shows the air density ( 3/kg m ). pc  the 

performance coefficient and it is a function of pit-
ch angle ( β ) and tip speed ratio ( λ ) and is desc-
ribed as in (2)-(4): 

2 5
1 3 4 6( , ) ( ) exp ( )
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 i   
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In this case, ω represents the rotational speed 
(rad/s) of blades while r shows the blade radius 
(m). c1, c2 .... c6 are constant coefficients, which 
depend on the blades’ mechanical structure and 
their values are 0.5176, 116, 0.4, 5, 21, and 
0.0068, respectively. 

Fig. 1. WECS scheme utilizing a boost converter and a diode rectifier with a grid-side inverter
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Generator-side converter 

It controls the PM  SG to get the MPPT opera-
tion. The MPPT operation is out of the scope of 
this study and another study describes it in detail 
[45].

Grid-side Inverter 

The GSI control system is used to regulate 
the d- and q-axis currents as well as the capaci-
tor voltage. Figure 2 shows the outer loop of a 
GSI control for adjusting DC-link voltages. The 
grid current’s quadratic component iq controls the 
reactive power. To assure a unity power factor, it 
must be set to zero. Grid voltage vector orienta-
tion control (VOC) is the foundation of the GSI 
control system.

VOC’s grid side inverter control technique 
employs three control loops with PI control-
lers. The measured and transformed grid phase 
currents id iq are compared to the reference grid 
currents i*

d  and i*
q. To achieve good control sys-

tem attributes, special decoupling circuits are 
required, and they have been used in the control 
system. As a result, the active/reactive powers can 
be controlled directly through id and iq. The refer-
ence voltages Vq–ref and Vd–ref are later translated 
into systems a, b, and c before they are passed to 
the SPWM block.

PROPOSED  ALGORITHMS

Artifi cial neural network 

It is a data processing paradigm based on how 
the human nervous system sees and processes 
data. An artifi cial neural network (ANN) consists 
of fi nite artifi cial neurons that form an informa-
tion network. The ANN models typically have 
an input and an output layer, having one or more 
hidden layers. One of the most often used ANNs 
is the feedforward neural network (FFNN). From 
the  input layer, the data is fi rst transmitted to 
hidden layers, which are later transmitted to the 
FFNN output layer. In any two layers of FFNN, 
the input-output data relationship can be math-
ematically stated as [39]: 

1, 2, 3,........

1, 2, 3,........1
( )



 
    


n n

i j i j
ki

i
y f w x bj j
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Here, k sho ws total neurons in an output/hid-
den layer, n represents the total number of input-
layer neurons, and yj shows the output value at 
the jth neuron. In this case, xj shows the input 
value at jth neuron, bj is the bias while f shows 
the activation function and wij  shows the weight 
coeffi  cients about input xi and output yj . When 
an error function is minimized, ANN fi nds out 
the learnable parameters and bj  optimal values, 
which have a batch of data. Here, the error func-
tion is expressed through mean squared error 
(MSE) [46]:
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In this case, p
jy   shows the output data that 

ANN has predicted, while m showing the total 

number of outputs, and a
jy  is the real data.

Table 1. Parameters of the system 

LCL filter parameters Linv = 17 mH, C = 1.9 μF,      
Lgrid = 0.3 mH 

Inverter output voltage 380 V 

Grid voltage 33 kV 

Frequency 50 Hz 

Load 0.5 k 

DC-link voltage 700 V 

 
 

F ig. 2. The cascaded GSI control system
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Grey wolf optimization 

In GWO, wolves are part of a pack and have 
exceptional hunting abilities. They also adhere 
to a strict social dominance hierarchy. This pack 
follows a tight dominance structure in which the 
group leader is Alpha (α) while the subordinates, 
called Beta (β), assist him and help him make 
decisions. As illustrated in Fig. 3, the remaining 
group members are either δ or ω. Alpha oversees 
deciding on a hunting target and directs Beta to 
join the hunt [47]. Beta follows Alpha’s orders 
and informs the rest of the pack. Beta is also in 
charge of informing Alpha of all the pack’s op-
erations. Additionally, Beta may assist Alpha in 
deciding specifi c situations. Both Alpha and Beta 
wolves have authority over the third category of 
wolves, called delta wolves. Scouts, hunters, sen-
tinels, caretakers, and elders are delta sub-types 
found in a typical pack. Omega is the pack’s least 
dominant wolf, and to complete the hunt, they 
must follow Delta, Beta, and Alpha but Omega 
wolves are signifi cant despite their lower hierar-
chical status. When Omega is not present, interns 
become irritable. Internal confl ict in the pack 
emerges in the absence of omega, resulting in the 
breakdown of the social hierarchical structure. 
Wolves’ hunting tactics include approaching, 
tracking, chasing, harassing, and encircling their 
prey, and when it stops moving, they attack it [48]. 

 The encircling moves of the wolves are nu-
merically approximated in a previous study [49]:

( ) ( )PD C x t x t    (7)

( 1) ( 1)    px t x t A D  (8)

Here xp(t) shows the leading wolves’ posi-
tions (positions of alpha, beta, or delta), t is the 
present iteration, x(t+1) is the arbitrary wolf’s 
position in the iteration, and x(t) is the arbitrary 
wolf’s position, D shows the distance while A and 
C show coeffi  cient vectors [50]: 
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In this case, r1 and r2 are random values be-
tween [0, 1], a(t) represents a variable with a 
linear iteration number reduced from 2 to 0, and 
T exhibits maximum iterations. If we take a look 
at the search area, Alpha has the ideal site to hunt 
his targets, which is followed by Beta, and Delta 
has the third position. All wolves (even Omega) 
acquired the top three places. The following set 
of equations can be used to depict a candidate 
wolf’s position keeping in view the top three po-
sitions [51]:
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Here, x(t) shows the candidate wolf’s po-
sition, who takes the alternative positions 
x1(t+1), x2(t+1), x3(t+1) while  xα(t+1), xβ(t+1)
and xδ(t+1) represent the alpha, beta, and delta 
wolves’ positions. Here x(t+1) is the candidate 
wolf’s position during the next iteration. The co-
effi  cients A and C in GWO are used to govern the 
search for space exploitation and exploration. The 

1A     value means that the wolves get the order 
to quit the current target. They will fi nd the search 
space for selecting a suitable target. The 1A   
value directs how the wolves approach the target 
and catch it [52] as shown in Figure 4..

The reduction in the value of A is adaptive-
ly and stochastically concerned with iteration Fig. 3. Grey wolves’ hierarchy
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numbers within the already known range [-2, 2] 
that creates an exploration-exploitation balance. 
The coefficient C has a uniform distribution, 
which is a random number in the range [0, 2]. In 
this case, C<1 is a stochastic variable that favors 
exploitation, whereas C>1 favors exploration. 
Here, coefficient C is independent of its iteration 
numbers while its stochastic behavior helps to 
avoid the local minima-trapping throughout the 
optimization process [53].

Optimization procedure

First, MATLAB was used to create an ANN 
model through the DPGS model approximation. 
In addition, the ANN model is used in conjunc-
tion with GWO to achieve improvement goals. 
The model development technique is broken 
down into two steps:

(i) Approximating the DPGS model with ANN

 • Dataset for input: The input datas-
et consists of the independent variables 

1 2 3 4 5 6[ , , , , , ]x x x x x x  corresponding to the 
controller’s gains and they can be represented 

as: 1 1 2 2 3 3[ , , , , , ]p i p i p iK K K K K K . The input dataset 
is produced at random within the controller’s 
gains’ minimum and maximum values.

 • Dataset for output: It shows the dependent 
variables’ values, which implement the stan-
dard deviation of errors 1 2( , , )e e e  according to 
the formula [54]:

2( )
  ix

N


  (12)

where: σ = Set standard deviation,
 N = the size of the set,
 xi = each value from the set,
 μ = the set mean.

The output dataset is generated by executing 
27 random runs to the DPGS model using the in-
put dataset for 3.6s with 1 µ s sample time. 

 • Against the DPGS model, the ANN model is 
in the trained form and is evaluated by apply-
ing input/output datasets. The mean square er-
ror (MSE) and correlation coefficient are used 
to assess the ANN model’s performance (R). 
Figures 5 and 6 demonstrate that the MSE val-
ues are closer to zero, and the correlation coef-
ficient (R) is 1.

Fig. 4. Wolves’ search space exploitation 
and exploration mechanisms [39]

Fig. 6. Scatter plot depicting the relationship 
between ANN and DPGS output

Fig. 5. Validation performance
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(ii) Coupled ANN-GWO model development 

 • Initialize the positions of each wolf at ran-
dom. The decision variable vector shows each 
wolf’s position (x). 

 • Using the ANN model, calculate each wolf’s 
fitness value (F). 

 • Three best values should be set as Alpha fit-
ness (Fα), beta fitness (Fβ), and delta fitness 
(Fδ). 

 • Assign the corresponding Alpha (xα), Beta 
(xβ), and Delta (xδ) to their corresponding 
positions.

 • Using Eq. 9, calculate the coefficients a, A and 
C for each wolf (x).

 • Using Eqs. 10 and 11, update each wolf’s 
position.

 • Steps 2–6 should be repeated until reaching 
the maximum iterations (T). 

Simulation Results and Discussion

The considered system’s performance is 
examined through MATLAB/Simulink when 
there are wind speed variations, as given in 
Figure 7. PI controllers are adjusted accord-
ing to the optimized gains by ANN-GWO, as 
Table 2 shows. After checking the controller’s 
performance, the variable wind speed profile is 
applied to the DPGS. 

As mentioned before, the DC bus reference 
voltage is 700 V and it should be almost the same 
for the control actions. Although the wind speed 
considerably changes, the bus voltage varies 
within the acceptable limits as illustrated in Fig-
ure 8. For the same wind profile, the fluctuations 
in the frequency have also been examined. It is 
obvious in Figure 9 that the wind speed variations 
usually cause slight frequency fluctuations. Ac-
cording to the IEC-61727 standard, the operating 
range is 50 ±1 Hz. It is concluded from Figure 9 
that the fluctuation in frequency can be appropri-
ate for the IEC-61727 standard.

For the grid-connected system, the smooth-
ness of the voltages and currents is significant. At 
the inverter side and in the zoomed region, the 
3-phase current/voltage is displayed in Figure 10. 
It is observed a small fluctuation in the voltage 
and current signals due to rapidly changing wind 
speed for a very short time (less than 1ms). The 
current increases as the wind speed increases and 
vice versa.

Figure 11 presents the clearer inverter current 
and output voltage signals for phase A. The phase 
voltage is smooth and steady-state. Also, it shows 
the matching of the voltage and current. Figure 
12 shows the phase voltage A in waveforms both 

Fig. 8. DC link voltage (V)

Fig. 7. Wind speed variation with time

Table 2. Optimized controller gains by the proposed 
method

1PK 1IK 2PK 2IK 3PK 3IK

10.87 478.42 1.809 3.905 1.382 3.638

Fig. 9. Frequency of the injected power (Hz)
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for the inverter and the grid. It can be noticed 
that the waveforms are stable and they are in 
the same phase. 

The voltage fl uctuation of the RMS value of 
phase A is reserved within acceptable limits [55] 
regarding the inverter output nominal voltage 
(Vnom=220V) as illustrated in Figure 13. For THD, 
there is a standard (IEEE-519) and it must be less 

than 5% [56]. Figure 14 is given to exa mine THD 
for this study and it can be concluded from the 
same fi gure that the proposed controller assured 
the standard limit despite changing wind speed. 

It is seen from Figure 14  that, the THD of the 
inverter voltage is 1.62% and the grid current is 
reduced to 0.93% with sinusoidal current injec-
tion into the grid.

Fig. 11. (a) Phase A voltage and current at the inverter side, (b) Zoomed 
Phase A current and voltage at the inverter side

Fig. 10. (a) 3-phase current and voltage at the inverter side, (b) Zoomed current and voltage at the inverter side

Fig. 12. (a) Phase volta ge Va at the inverter and grid side, (b) zoomed 
region of Phase voltage Va at the inverter and grid side
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CONCLUSIONS 

This paper has proposed  the ANN-based 
GWO algorithm for tuning the PI controllers’ 
coeffi  cients in the GSI of DPGS to improve the 
qual ity of power which is injected into the elec-
tric grid. The proposed GWO method has shown 
well-organized exploitation and exploration, and 
besides, it can avoid local optimum. Since this 
method is robust and simple, it can be applied to 
complex systems. Moreover, the proposed algo-
rithm does not need any mathematical model. The 
ANN model is used as an alternative to DPGS. 
The ANN model is  generated by using the range 
of the controllers’ parameters as inputs and the 
standard deviation of the corresponding errors got 
previously by execution of the DPGS model. Ac-
cording to the ANN model’s performance evalu-
ation, the correlation coeffi  cient (R) is one and 
the MSE is close to zero. Furthermore, because 
the ANN model is computationally eff ective, it is 
well-suited to the development of simulation-op-
timization systems. The ANN-GWO technique’s 

infl uence can save time for parameter selection. It 
is proved from the results that the proposed meth-
od shows good performance in terms of the low 
THD, steady-state voltage, and frequency stabil-
ity of the injected power by the WECS accord-
ing to IEC standards despite changes in the wind 
speed. Therefore, it can be co ncluded that using 
an ANN-GWO-based strategy to tune multiple 
PI controllers in a grid-tied wind energy system 
is an eff ective method, and the procedure is also 
applicable to other power systems and renewable 
energy applications.
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